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The paper deals with the comparative calibration model, i.e. with a situation when both variables are subject to errors. The calibration
function is supposed to be a polynomial. From the statistical point of view, themodel after linearization could be represented by the linear
errors-in-variables (EIV) model. There are two different ways of using the Kenward and Roger’s type approximation to obtain the confidence
region for calibration function coefficients. These two confidence regions are compared on a small simulation study. Calibration process and
process of measuring with calibrated device are described under the assumption that the measuring errors are normally distributed.
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1. INTRODUCTION

Calibration is a very important part of metrology. Accord-
ing to [1] calibration is an operation that, under specified
conditions, in a first step, establishes a relation between the
quantity values with measurement uncertainties provided by
measurement standards and corresponding indications with
associated measurement uncertainties and, in a second step,
uses this information to establish a relation for obtaininga
measurement result from an indication. Calibration may be
expressed by a statement, calibration function, calibration di-
agram, calibration curve, or calibration table.It means that,
if we have a measuring device and a measurement standard,
calibration (process) establishes a relation between the quan-
tity values provided by the measurement standard and corre-
sponding values indicated on the (calibrated) measuring de-
vice. Of course, if we measure a quantity by the standard, we
obtain only the evidence value (estimate)y of the true quan-
tity valueν (expressed in units of the standard). In the same
way, if we measure the same quantity by the (calibrated) mea-
suring device, we obtain only the evidence value (estimate)x
of the true quantity valueµ (expressed in units of the (cal-
ibrated) measuring device). The indications (evidence val-
ues) can be obtained in the same or different units. In this
paper, the theoretical calibration function,ν = f (µ), is un-
derstood as a function which expresses the relation between
the ideal (true, errorless) values of the same object measured
by the calibrated measuring device and the standard, respec-
tively. More precisely, we consider the problem of calibrat-
ing the less precise measuring deviceX by the more precise
measuring deviceY . The paper derives the confidence re-
gion for calibration function coefficients based on repeated

measurements ofm different objects (substances, quantities
of interest)V1,V2, . . . ,Vm realized by two different measuring
devicesX andY , respectively. The accuracy of both mea-
suring devicesX andY is unknown, but it is supposed that
the squared standard uncertaintiesσ2

x andσ2
y are unchanged

(but need not be equal) in the whole range of measurements.
They are estimated using the MINQUE estimators. The mea-
surements are supposed to be normally distributed and the
calibration function is a polynomial of degreek.

The calibration process consists of two parts: (i) creation
and evaluation of the calibration model, and (ii) measuring
with the calibrated device. In the contribution, we are dealing
with creation of the calibration model under some specific but
real conditions. In fact, our contribution is about estimation
of the calibration function parameters including the problem
of determinating the confidence region for these parameters.
It turns out that there exist two ways of determinating the de-
sired confidence region using Kenward and Roger’s approxi-
mation. Using simulations, we compare the behavior of these
two confidence regions. It turns out that in the considered
situations the statistical performance of both confidence re-
gions is practically the same. Finally, we derive the procedure
for measuring with the calibrated device. Given the recorded
value x, which is an estimate of the true unknown valueµ
of the measured object (in units of the less precise measuring
deviceX ), we determine the(1−α) confidence interval for
νµ - the true (unknown) errorless value of the same measured
object (in units of the more precise measuring deviceY ).

In this paper, we describe the model of comparative cali-
bration with polynomial calibration function. We derive the
best linear unbiased estimators (BLUEs) which are the opti-
mal estimators of the model parameters, and moreover, we
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also derive the approximate(1− α) confidence region for
the unknown parameters, as well as for any linear function
of the parameters under assumption of normally distributed
measurements.

In Section 2 we describe the polynomial calibration model
and derive the BLUEs of the model parameters. In Section 3
are derived methods for estimation of the unknown variances
(squared uncertainties) of the measurement error. In particu-
lar, we consider the minimum norm quadratic unbiased esti-
mator (MINQUE). In Section 4 we present detailed descrip-
tion of the iterative procedure for estimating the model pa-
rameters. In Section 5 and Section 6 are described two types
of construction of the confidence region for the calibration
function parameters based on the Kenward and Rogger’s ap-
proximation. In Section 7, these two approaches are com-
pared based on using the empirical coverage probabilities by
Monte Carlo simulations. Section 8 describes the method of
measurements with the calibrated device. The final conclu-
sions and discussion is presented in Section 9.

2. THE CALIBRATION MODEL AND BLUES OF PARAME-
TERS

We assume that we havem different objects (substances,
quantities of interest)V1,V2, . . . ,Vm. Each of these objects
is measured with two different measuring devices (device
X andY , respectively) and we repeat the measurementsn
times. It is assumed that values measured on both devices
are realizations of independent normally distributed random
variables.

We shall use the following notation.Xi, j is the j-th mea-
surement of objectVi with the deviceX andXi, j ∼N(µi ,σ2

x ),
i = 1,2, . . . ,m, j = 1,2, . . . ,n, where the mean value ofXi, j is
µi — the true errorless value of the objectVi in units of the
measuring deviceX andσ2

x is the dispersion ofXi, j . Anal-
ogously,Yi, j is the j-th measurement of objectVi with the
deviceY andYi, j ∼ N(νi ,σ2

y ), i = 1,2, . . . ,m, j = 1,2, . . . ,n,
where the mean value ofYi, j is νi — the true errorless value
of the objectVi in units of the measuring deviceY andσ2

y is
the dispersion ofYi, j .

As mentioned above, from the statistical point of view the
calibration function expresses the ideal (true, errorless) values
of the measurand (the measured object, substance, or quan-
tity) in units of the measuring instrumentY (here the more
precise measuring instrument, the standard) as a function of
the true values of the measurand in units of the measuring in-
strumentX (here the less precise instrument, the calibrated
device). In other words, the calibration function expresses
the relationship between the ideal (true, errorless) values of
measuring the same object (substance, quantity) by two mea-
suring instrumentsX andY , respectively. In our case, we
assume that the calibration function is a polynomial of degree
k, i.e. ν = a0+a1µ +a2µ2+ · · ·+akµk.

Let us denote

X i =




X1,i

X2,i
...

Xm,i


 , i = 1,2, . . . ,n, µ =




µ1
...

µm




and

Y i =




Y1,i

Y2,i
...

Ym,i


 , i = 1,2, . . . ,n, ν =




ν1

ν2
...

νm


 .

The model of calibration is(X′
1,Y

′
1, . . . ,X

′
n,Y

′
n)

′ ∼

N

[
(1n⊗ I2m)

(
µ
ν

)
, In⊗

(
σ2

x Im 0
0 σ2

y Im

)]

(⊗ means the Kronecker product) with the nonlinear
constraints on parameters,ν = a01m + a1µ + · · · + akµk,
where 1m is the m× 1 vector (1,1, . . . ,1)′, and µb =(
µb

1 , . . . ,µ
b
m

)′
. Using the Taylor expansion in proper values

a0 =(a00,a10,a20, . . . ,ak0)
′ andµb

0 =
(
µb

10, . . . ,µ
b
m0

)′
, and ne-

glecting the terms of the second and higher order, and also
puttingδ µi = µi −µi0, i = 1,2, . . . ,m, δµ = (δ µ1, . . . ,δ µm)

′,
we obtain the linear regression model with (linear) constraints
on parameters (see e.g., [2], [3], [4]),

ξ =
(
X′

1−µ ′
0,Y

′
1, . . . ,X

′
n−µ ′

0,Y
′
n

)′
∼

N

[
(1n⊗ I2m)

(
δµ
ν

)
, In⊗

(
σ2

x Im 0
0 σ2

y Im

)]
, (1)

(
diag

(
a101m+ · · ·+kak0µk−1

0

)
,−Im

)( δµ
ν

)
+

(
1m,µ0, . . . ,µ

k
0

)
a= 0 (2)

(diag
(
a101m+ · · ·+kak0µk−1

0

)
is the diagonal matrix with el-

ements of the vector
(
a101m+ · · ·+kak0µk−1

0

)
on the diago-

nal anda= (a0,a1, . . . ,ak)
′).

If we denote
β =

(
δ ′

µ ,ν ′
)′
,

S= diag
(

a101m+ · · ·+kak0µk−1
0

)
,

B1 = (S,−I), B2 =
(

1m,µ0, . . . ,µ
k
0

)
,

Σ = In⊗

(
σ2

x Im 0
0 σ2

y Im

)
, C−1 =

1
n

(
σ2

x Im 0
0 σ2

y Im

)
,

A1 = A1
(
σ2

x ,σ2
y

)
= B1C−1B′

1 =
1
n

(
σ2

x SS+σ2
y I
)

X =
1
n

(
n

∑
i=1

X1,i , . . . ,
n

∑
i=1

Xm,i

)′

,

Y =
1
n

(
n

∑
i=1

Y1,i , . . . ,
n

∑
i=1

Ym,i

)′

,

then conditions (2) are

(S,−I)
(

δµ
ν

)
+B2a= 0, or B1

(
δµ
ν

)
+B2a= 0 (3)
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and according to [2], [3], and [4], the BLUE (best linear un-
biased estimator) of vector(β ′,a′)′ is

(
β̂
â

)
=

(
I2m−C−1B′

1Q11B1

−Q21B1

)(
X−µ0

Y

)
,

and the covariance matrix of̂a is

cov(â) =−Q22,

where
(

B1C−1B′
1 B2

B′
2 0

)−1

=

(
Q11 Q12

Q21 Q22

)
.

After a short calculation we finally have (see e.g., [5])

µ̂ = X−
σ2

x

n
SQ11

(
S
(
X−µ0

)
−Y

)
, (4)

ν̂ = Y+
σ2

y

n
Q11

(
S
(
X−µ0

)
−Y

)
, (5)

â= (â0, . . . , âk)
′ =−Q21B1

(
X−µ0

Y

)
(6)

and
cov(â) =−Q22 =

(
B′

2A−1
1 B2

)−1
. (7)

We only note that
(

X−µ0
Y

)
∼ N

((
δµ
ν

)
,C−1

)
. (8)

3. MINQUE ESTIMATORS OFσ2
x AND σ2

y

According to [4], [5], and [6], it can be shown that the
MINQUE (minimum norm quadratic unbiased estimator) of
the variance componentsσ2

x andσ2
y (locally at some appro-

priate valuesσ2
x0, σ2

y0) is

(
σ̂2

x
σ̂2

y

)
= S−1

(MLΣ0ML)+
F

where

F =




1
σ4

x0

[
∑n

j=1

(
X j −X

)′ (X j −X
)
+n
(
X− µ̂

)′ (X− µ̂
)]

1
σ4

y0

[
∑n

j=1

(
Y j −Y

)′ (Y j −Y
)
+n
(
Y− ν̂

)′ (Y− ν̂
)]


 ,

S(MLΣ0ML)+ =




(n−1)m
σ4

x0
+ 1

n2 tr(SQ11SSQ11S)
1
n2 tr(Q11SSQ11)

1
n2 tr(Q11SSQ11)

(n−1)m
σ4

y0
+ 1

n2 tr(Q11Q11)


 .

The covariance matrix of

(
σ̂2

x
σ̂2

y

)
is

W
(
σ2

x0,σ2
y0

)
= 2S−1

(MLΣ0ML)+
. (9)

4. ITERATIVE PROCEDURE FOR ESTIMATING PARAME-
TERS

To estimate the desired parameters of the calibration function,
we apply results described in Section 2 and 3.

1. We compute the initial (appropriate) values of parame-
tersσ2

x andσ2
y as (realizations of the following random

variables)

σ2
x0 =

1
mn

m

∑
i=1

n

∑
j=1

(
Xi, j −

1
n

n

∑
s=1

Xi,s

)2

,

σ2
y0 =

1
mn

m

∑
i=1

n

∑
j=1

(
Yi, j −

1
n

n

∑
s=1

Yi,s

)2

,

then we compute the initial valuesµ0 as (realization of
the random vector)

µ0 = X,

and the vectora0 as (realization of the random vector)

a0 =
(
B′

2B2
)−1B′

2Y.

2. As in Section 2, we obtain the estimatorsµ̂ andν̂ from
(4) and (5), the estimator̂a from (6), where

Q11 =
(
B1C−1B′

1

)−1
−
(
B1C−1B′

1

)−1
B2×

(
B′

2

(
B1C−1B′

1

)−1
B2

)−1
B′

2

(
B1C−1B′

1

)−1
,

Q12 =
(
B1C−1B′

1

)−1
B2

(
B′

2

(
B1C−1B′

1

)−1
B2

)−1
,

Q21 = Q′
12.

3. We put the realization of̂a (i.e. the estimate) as the ini-
tial valuea0 = (a00,a10, . . . ,ak0)

′ and calculate the es-
timatorsσ̂2

x , σ̂2
y by the procedure described in Section

3. Thus, we obtain the (approximate) BLUE ofµ ,ν ,a
together with the covariance matrix cov(â).

4. We put the realizations of̂σ2
x , σ̂2

y (the estimates) as the
valuesσ2

x0 andσ2
x0, respectively, subsequently we put the

realization ofµ̂ (i.e. the estimate) as the initial valueµ0
and return to step 2. We have refined the estimates.

We continue with this iteration process (steps 2, 3, and 4)
till the subsequent estimates are sufficiently accurate. Ac-
cording to our opinion 4-7 iteration steps are needed.

The MATLAB codes created for this iterative procedure
are available on the website1.

1http://www.math.muni.cz/∼xsirucko/programy/kr.rar
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5. TYPE 1 CONFIDENCE REGION FOR THE CALIBRATION

FUNCTION PARAMETERS

For the final estimator ofa, obtained in (6), it holds

â∼ N
(

a,
(
B′

2A−1
1 B2

)−1
)
.

In notation of Appendix 1 we have

X = I , V
(
σ2

x ,σ2
y

)
=
(
B′

2A−1
1 B2

)−1
,

σ2
1 = σ2

x , σ2
2 = σ2

y , σ̂2
1 = σ2

x0, σ̂2
2 = σ2

y0

(σ2
x0 andσ2

y0 are from Section 4, point 4). So,

(1)P1 =−
1
n

B′
2A−1

1

(
σ2

x0,σ2
y0

)
S2A−1

1

(
σ2

x0,σ2
y0

)
B2,

(1)P2 =−
1
n

B′
2A−2

1

(
σ2

x0,σ2
y0

)
B2.

Similarly,

(1)U1,1=
1
n2 B′

2A−1
1 S2A−1

1 B2
(
B′

2A−1
1 B2

)−1
B′

2A−1
1 S2A−1

1 B2,

(1)U1,2 =
1
n2 B′

2A−1
1 S2A−1

1 B2
(
B′

2A−1
1 B2

)−1
B′

2A−2
1 B2,

(1)U2,1 =
(1)U′

1,2,

(1)U2,2 =
1
n2 B′

2A−2
1 B2

(
B′

2A−1
1 B2

)−1
B′

2A−2
1 B2,

(1)R1,1=
2
n2

[
B′

2A−1
1 S2A−1

1 B2
(
B′

2A−1
1 B2

)−1
B′

2A−1
1 S2A−1

1 B2

−B′
2A−1

1 S2A−1
1 S2A−1

1 B2

]
,

(1)R1,2 =
1
n2

[
B′

2A−2
1 B2

(
B′

2A−1
1 B2

)−1
B′

2A−1
1 S2A−1

1 B2−

−B′
2A−2

1 S2A−1
1 B2−B′

2A−1
1 S2A−2

1 B2+

+ B′
2A−1

1 S2A−1
1 B2

(
B′

2A−1
1 B2

)−1
B′

2A−2
1 B2

]
,

(1)R2,2=
2
n2

[
B′

2A−2
1 B2

(
B′

2A−1
1 B2

)−1
B′

2A−2
1 B2−B′

2A−3
1 B2

]
.

In the notation of Appendix 1 we have

Φ
(
σ2

x ,σ2
y

)
=
(
B′

2A−1
1 B2

)−1

and
(1)Φ̂A = Φ

(
σ2

x0,σ2
y0

)
+

+2Φ
(
σ2

x0,σ2
y0

)
{

2

∑
i=1

2

∑
j=1

{W}i, j(
(1)Ui, j−

− (1)PiΦ(σ2
x0,σ2

y0)
(1)P j −

1
4

(1)Ri, j)

}
Φ
(
σ2

x0,σ2
y0

)
, (10)

where {W}i, j is the (i, j)-th element of the matrix
W(σ2

x0,σ2
y0) given in (9).

According to Appendix 1 we compute(1)A1, (1)A2, (1)g,
(1)B, (1)c1, (1)c2, (1)c3, (1)ρ , (1)u, and (1)λ . The(1−α)
confidence region for vectora using the Kenward and Roger’s
method is

(1)
C(1−α) =

{
a : (â−a)′ (1)Φ̂

−1
A (â−a)≤

k+1
(1)λ

Fk+1, (1)u(1−α)

}
, (11)

whereFk+1, (1)u(1−α) is the(1−α) quantile of the Fisher-

SnedecorF distribution withk+1 and (1)u degrees of free-
dom.

If inferences are made about a linear combinationl′a of
the elements ofa, then again according to Appendix 1 we
calculate (l ,1)A, (l ,1)B, (l ,1)c1, (l ,1)c2, (l ,1)c3, (l ,1)ρ , (l ,1)u,
and (l ,1)λ .

The (1−α) confidence region forl′a using the Kenward
and Roger’s method is

(l ,1)
C(1−α)=

{
l′a : (l ,1)λ

(
l′â− l′a

)(
l′ (1)Φ̂Al

)−1(
l′â− l′a

)
≤

F1,(l ,1)u(1−α)
}
. (12)

A special case is determination of the(1−α) confidence
interval for the valuea0 + a1µx + a2µ2

x + · · ·+ akµk
x for a

known valueµx. In that case isl = lx = (1,µx, . . . ,µk
x)

′ and
according to (12)

P

((
l′xâ− l′xa

)2
(

l′x
(1)Φ̂Alx

)−1
≤

1
(l ,1)λ

F1,(l ,1)u(1−α)

)
, (13)

i.e.

P


l′xâ− t(l ,1)u(1−α/2)

√
l′x (1)Φ̂Alx

(l ,1)λ
≤ l′xa≤

l′xâ+ t(l ,1)u(1−α/2)

√
l′x (1)Φ̂Alx

(l ,1)λ


= 1−α, (14)

wheret(l ,1)u(1−
α
2 ) is the

(
1− α

2

)
quantile of Studentt distri-

bution with(l ,1)u degrees of freedom.
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6. TYPE 2 CONFIDENCE REGION FOR THE CALIBRATION

FUNCTION PARAMETERS

Let us consider the random vector

η =−S
(
X−µ0

)
+Y =−B1

(
X−µ0

Y

)
. (15)

The mean value of (15) is

E (η) =−S(µ −µ0)+ Iν =−B1

(
δµ
ν

)
= B2a

(from condition (2)) and the covariance matrix of (15) is

cov(η) = B1C−1B′
1 = A1(σ2

x ,σ2
y ) =

1
n
(σ2

x SS+σ2
y I).

So, for the random vectorη holds

η ∼ N(B2a,A1) .

In the notation of Appendix 1, in this section we have

X = B2, V(σ2
x ,σ2

y ) = A1,

σ2
1 = σ2

x , σ2
2 = σ2

y , σ̂2
1 = σ2

x0, σ̂2
2 = σ2

y0,

(σ2
x0 andσ2

y0 are from Section 4, point 4). The REML (re-
stricted maximum likelihood) estimator ofa is the general-
ized least squares estimator

â= Φ(σ2
1 ,σ2

2 )B
′
2A−1

1 (σ2
1 ,σ2

2 )η

with
Φ
(
σ2

1 ,σ2
2

)
=
(
B′

2A−1
1 (σ2

1 ,σ2
2 )B2

)−1
.

The adjusted estimator for small sample covariance matrix of
â recommended by Kenward and Roger [7] is

(2)Φ̂A = Φ
(
σ2

x0,σ2
y0

)
+

+2Φ
(
σ2

x0,σ2
y0

)
{

2

∑
i=1

2

∑
j=1

{W}i, j(
(2)Ui, j−

− (2)PiΦ(σ2
x0,σ2

y0)
(2)P j −

1
4

(2)Ri, j)

}
Φ(σ2

x0,σ2
y0), (16)

where
(2)P1 =

(1)P1,
(2)P2 =

(1)P2,

(2)U1,1 =
1
n2 B′

2A−1
1 S2A−1

1 S2A−1
1 B2,

(2)U1,2 =
1
n2 B′

2A−1
1 S2A−2

1 B2,

(2)U2,1 =
(2)U′

1,2,

(2)U2,2 =
1
n2 B′

2A−3
1 B2,

(2)R1,1 =
(2)R1,2 =

(2)R2,1 =
(2)R2,2 = 0.

According to Appendix 1 (analogously as in Section 5) we
compute (2)A1, (2)A2, (2)g, (2)B, (2)c1, (2)c2, (2)c3, (2)ρ ,
(2)u, and (2)λ .

The(1−α) confidence region for vectora using the Ken-
ward and Roger’s method is now

(2)
C(1−α) =

{
a : (â−a)′ (2)Φ̂

−1
A (â−a)≤

k+1
(2)λ

Fk+1, (2)u(1−α)

}
. (17)

If inferences are made about the linear combinationl′a of
the elements ofa, then again according to Appendix 1 we
calculate (l ,2)A, (l ,2)B, (l ,2)c1, (l ,2)c2, (l ,2)c3, (l ,2)ρ , (l ,2)u,
and (l ,2)λ .

The (1−α) confidence region forl′a using the Kenward
and Roger’s method is now

(l ,2)
C(1−α) =

{
l′a : (l ,2)λ (l′â− l′a)

(
l′ (2)Φ̂Al

)−1
(l′â− l′a)≤

F1,(l ,2)u(1−α)
}
. (18)

So for the valuea0 + a1µ + a2µ2 + · · ·+ akµk = l′µa (lµ =

(1,µ , . . . ,µk)′) for a known valueµ is

P


l′µ â− t (l ,2)u(1−α/2)

√
l′µ (2)Φ̂Alµ

(l ,2)λ
≤ l′µa≤

l′µ â+ t(l ,2)u(1−α/2)

√
l′µ (2)Φ̂Alµ

(l ,2)λ


= 1−α. (19)

The process of determinating the parameters of the calibra-
tion function (the parameter estimation) together with deter-
minating the confidence region for the parameters (and also
the confidence region for the whole calibration function) is
described ascalibrating the measuring device.

7. COMPARISON OF TYPE 1 AND TYPE 2 CONFIDENCE

REGIONS USING SIMULATIONS

There are two different possibilities to construct the (approxi-
mative)(1−α) confidence region for the calibration function
parametersa0,a1, . . . ,ak, namely (11) (derived in Section 5)
and (17) (derived in Section 6). To compare their statistical
performances, we carried out a (small) simulation study.

For various parameter sets of the calibration function (poly-
nomial of degree 2, 3, and 4), we realized 10000 repeated
measurements of the calibration function and investigatedthe
percentage of the empirical coverage of the true parameters
by the(1−α) confidence region (11) (labeled KR1) and by
the (1−α) confidence region (17) (labeled KR2). Here,α
was in all cases 0.05. Sample results are recorded in Ap-
pendix 2. Other simulation results can be found on the web-
site2. From the presented simulations it is evident that the
performance of both confidence regions (11) and (17) is prac-
tically the same.

2http://www.math.muni.cz/∼xsirucko/programy/simulations.pdf
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8. MEASUREMENTS WITH THE CALIBRATED DEVICE

Let us assume that by the measuring deviceX (the less pre-
cise measuring device, the calibrated measuring device) we
have recorded an errorless valueµ . We want to determine
the (approximate)(1−α) confidence interval for the value
νµ = a0 + a1µ + a2µ2 + · · ·+ akµk, i.e. the(1− α) confi-
dence interval for the errorless recorded value measured by
the measuring deviceY (the more precise measuring device,
the standard) using the Kenward and Roger’s method.

In that caselµ =
(
1,µ ,µ2, . . . ,µk

)′
and the desired(1−α)

confidence interval is given by (14) or by (19). If we compute
this confidence interval for allµ in a given interval(γ ,δ ),
we obtain a confidence region along the estimated calibration
functionâ0+ â1µ + · · ·+ âkµk in the given interval(γ ,δ ).

Now, let us determine the confidence interval forνµ =
a0+a1µ +a2µ2+ · · ·+akµk when (errorless, true) valueµ is
measured by the measuring deviceX , but the realization of
the measurement (the registered value, evidence value) isx.
It means we have realized the measurementX ∼ N(µ ,σ2

x ). It
is well known that ifX ∼ N(µ ,σ2

x ) andS2 is an estimator of
σ2

x for which it holds w
σ2

x
S2 ∼ χ2

w (χ2
w is χ2 distribution with

w degrees of freedom), whileX andS2 are independent, then
the following holds true

X−µ
S

∼ tw.

It means that the dispersion isD(S2) = 2σ4
x

w and the degrees of

freedom arew= 2σ4
x

D(S2)
. If we substituteS2 by the MINQUE

estimatorσ̂2
x , then the degrees of freedom are given approxi-

mately as

w
.
=

2σ̂4
x{

W(σ2
x0,σ2

y0)
}

1,1

,

whereW(σ2
x0,σ2

y0) is given in (9).
The(1− γ) confidence interval forµ is

(x− σ̂xtw(1− γ/2),x+ σ̂xtw(1− γ/2)) ,

i.e.

P{X− σ̂xtw(1− γ/2)< µ < X+ σ̂xtw(1− γ/2)}
.
= 1− γ .

Our main aim is to find the confidence interval forνµ = a0+
a1µ +a2µ2+ · · ·+akµk (the errorless (true) value measured
on the standard) if the reading on the calibrated measuring
device isx. Let us denote

d= argmin
s∈(x−σ̂xtw(1−γ/2),x+σ̂xtw(1−γ/2))

{â0+ â1s+ â2s2+ · · ·+ âks
k},

h= argmax
s∈(x−σ̂xtw(1−γ/2),x+σ̂xtw(1−γ/2))

{â0+ â1s+ â2s2+ · · ·+ âks
k},

then, by using the Bonferroni inequality, we finally get the
approximate(1−α − γ) confidence interval forνµ = a0 +
a1µ +a2µ2+ · · ·+akµk

P

{
â0+ â1d+ · · ·+ âkd

k− tw(1−α/2)×

√
1

(l ,i)λ
(1 d d2 . . . dk) (i)Φ̂A(1 d d2 . . . dk)′ ≤

≤ νµ = a0+a1µ +a2µ2+ · · ·+akµk ≤

≤ â0+ â1h+ · · ·+ âkh
k+ tw(1−α/2)×

√
1

(l ,i)λ
(1 h h2 . . . hk) (i)Φ̂A(1 h h2 . . . hk)′

}

≥ 1−α − γ .

In our case, the indexi can be equal to 1 or 2.

9. CONCLUSIONS

We derived the comparative calibration model where the cali-
bration function is a (complete) polynomial of a given degree.
This model is an errors-in-variables model and after lineariza-
tion could be represented as a linear regression model with
linear constraints on parameters. The optimal linear estima-
tors (BLUEs) of the unknown calibration function parameters
are shown. The (approximate)(1−α) confidence region for
the whole unknown parameter vector and also for any linear
function of the parameters is derived using results obtained
by Kenward and Roger [7]. This derivation was done in two
ways, and simulations indicate that the performance of both
ways is practically the same. Further deeper investigationis
needed to explain this fact, which is beyond the scope of this
paper. The whole contribution is based on the assumption
of normally distributed measuring errors. Further research in
the issues continues in considering also type B uncertainties
of measurements.

APPENDIX 1 — SMALL SAMPLE INFERENCE FOR FIXED

EFFECTS

Let us derive the confidence region for the whole parametera
and also for an arbitrary linear combinationl′a by using the
method suggested by Kenward and Roger [7].

Consider the general Gaussian linear model fors observa-
tionsξ s,1,

ξ ∼ N(Xa;V),

whereX is s× (k+1) matrix with rankk+1, V is a known
covariance matrix,a is a (k+ 1)-dimensional vector of un-
known parameters, and the elements of the covariance matrix
V(σ2

1 ,σ2
2) are assumed to be functions of two parametersσ2

1

andσ2
2 . We assume that the first two partial derivatives∂V

∂σ2
i
,

∂ 2V
∂σ2

i ∂σ2
j
, i, j ∈ {1,2} exist.

The REML (restricted maximum likelihood) estimator ofa
is the generalized least squares estimator

â= Φ
(
σ2

1 ,σ2
2

)
X′
(
V
(
σ2

1 ,σ2
2

))−1 ξ
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with

Φ(σ2
1 ,σ2

2) =
(

X′
(
V
(
σ2

1 ,σ2
2

))−1
X
)−1

.

The REML estimator ofa is unbiased. Kenward and Roger
[7] recommend to use an adjusted estimator of the small sam-
ple covariance matrix of̂a

Φ̂A = Φ(σ̂2
1 , σ̂2

2)+2Φ(σ̂2
1 , σ̂2

2)

{
2

∑
i=1

2

∑
j=1

{W}i, j(Ui, j−

PiΦ(σ̂2
1 , σ̂2

2 )P j −
1
4

Ri, j)

}
Φ(σ̂2

1 , σ̂2
2),

where fori = 1,2

Pi = X′ ∂V−1

∂σ2
i

∣∣∣∣ σ2
1=

σ2
2=

σ̂2
1

σ̂2
2

X, (20)

Ui, j = X′ ∂V−1

∂σ2
i

∣∣∣∣ σ2
1=

σ2
2=

σ̂2
1

σ̂2
2

V
∂V−1

∂σ2
j

∣∣∣∣ σ2
1=

σ2
2=

σ̂2
1

σ̂2
2

X,

Ri, j = X′V−1 ∂ 2V
∂σ2

i ∂σ2
j

∣∣∣∣ σ2
1=

σ2
2=

σ̂2
1

σ̂2
2

V−1X

and{W}i, j is the(i, j)-th element of the matrixW(σ̂2
1 , σ̂2

2)
given in (9).

Inferences are to be made simultaneously about the (whole)
vectora. Kenward and Roger in [7] showed that the statistics

1
k+1

(â−a)′Φ̂
−1
A (â−a)∼

1
λ

Fk+1,u

has approximately1
λ Fk+1,u distribution, whereλ and u are

calculated as follows:

A1 =
2

∑
i=1

2

∑
j=1

{W(σ̂2
1 , σ̂2

2 )}i, j×

× tr
(
Φ(σ̂2

1 , σ̂2
2)Pi

)
tr
(
Φ(σ̂2

1 , σ̂2
2)P j

)
,

A2 =
2

∑
i=1

2

∑
j=1

{W(σ̂2
1 , σ̂2

2 )}i, j×

× tr
(
PiΦ

(
σ̂2

1 , σ̂2
2

)
P jΦ

(
σ̂2

1 , σ̂2
2

))
,

g=
(k+2)A1− (k+5)A2

(k+3)A2
, B=

1
2(k+1)

(A1+6A2),

c1 =
g

3(k+1)+2(1−g)
, c2 =

k+1−g
3(k+1)+2(1−g)

,

c3 =
k+3−g

3(k+1)+2(1−g)
,

ρ =
(1+c1B)(1− 1

k+1A2)
2

(k+1)(1−c2B)2(1−c3B)
,

and finally,

u= 4+
k+3

(k+1)ρ −1
,

λ =
u

u−2

(
1−

1
k+1

A2

)
.

The(1−α) confidence region for vectora using the Ken-
ward and Roger’s method is

C(1−α) =
{

a : (â−a)′Φ̂
−1
A (â−a)≤

k+1
λ

Fk+1,u(1−α)

}
.

If inferences are made about the linear combinationl′a of
the elements ofa (e.g., we are interested in the(1−α) confi-
dence interval forl′a), then according to Kenward and Roger
in [7]

(â−a)′l
(

l′Φ̂Al
)−1

l′(â−a)∼
1

(l)λ
F1,(l)u,

where(l)λ and(l)u are calculated as follows:

(l)A=
1

(l′Φ(σ̂2
1 , σ̂2

2)l)
2

2

∑
i=1

2

∑
j=1

{W
(
σ̂2

1 , σ̂2
2

)
}i, j×

×
(
l′ΦPiΦl

)(
l′ΦP jΦl

)
,

(l)B=
7

2(k+1)
(l)A,

(l)c1 =
−3

3(k+1)(k+3)+2(k+6)
,

(l)c2 =
3+(k+1)(k+3)

3(k+1)(k+3)+2(k+6)
,

(l)c3 =
(k+3)2+3

3(k+1)(k+3)+2(k+6)
,

(l)ρ =
(1+ (l)c1

(l)B)(k+1− (l)A)

(k+1)3(1− (l)c2
(l)B)2(1− (l)c3

(l)B)
,

and finally,

(l)u=
4(k+1) (l)ρ +k−1

(k+1) (l)ρ −1
,

(l)λ =
(l)u

(l)u−2

k+1− (l)A
k+1

.

The(1−α) confidence interval forl′a using the Kenward and
Roger’s method is

(l)
C(1−α) =

{
l′a : (l)λ (l′â− l′a)

(
l′Φ̂Al

)−1
(l′â− l′a)≤

F1,(l)u(1−α)
}
.
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APPENDIX 2 — SIMULATION RESULTS

The simulation results presented in the tables are explained in
Section 7.

Table 1. Polynomial of degree 2,f2(x) = 0.25+0.5x+0.05x2

µ = (0;2.5;5)′ KR1 KR2
σx = 0.125,σy = 0.0625

n=2 0.8763 0.8763
n=3 0.9246 0.9246
n=4 0.9361 0.9361
n=5 0.9409 0.9409
n=10 0.9466 0.9466
n=20 0.9501 0.9501

σx = 0.25,σy = 0.125
n=2 0.8925 0.8925
n=3 0.9209 0.9209
n=4 0.9279 0.9279
n=5 0.9365 0.9365
n=10 0.9432 0.9432
n=20 0.9518 0.9518

σx = 0.5,σy = 0.25
n=2 0.9412 0.9412
n=3 0.9306 0.9306
n=4 0.9272 0.9272
n=5 0.9283 0.9283
n=10 0.9416 0.9416
n=20 0.9447 0.9447

σx = 1,σy = 0.5
n=2 0.9481 0.9481
n=3 0.9328 0.9328
n=4 0.9268 0.9268
n=5 0.9302 0.9302
n=10 0.9293 0.9293
n=20 0.9353 0.9353

µ = (0;1;. . . ;9)′ KR1 KR2
σx = 0.125,σy = 0.0625

n=2 0.9263 0.9264
n=3 0.9376 0.9376
n=4 0.9407 0.9409
n=5 0.9470 0.9470
n=10 0.9499 0.9500
n=20 0.9511 0.9511

σx = 0.25,σy = 0.125
n=2 0.9268 0.9268
n=3 0.9406 0.9407
n=4 0.9429 0.9430
n=5 0.9434 0.9435
n=10 0.9480 0.9481
n=20 0.9456 0.9456

σx = 0.5,σy = 0.25
n=2 0.9174 0.9178
n=3 0.9288 0.9288
n=4 0.9332 0.9333
n=5 0.9353 0.9354
n=10 0.9458 0.9458
n=20 0.9461 0.9461

σx = 1,σy = 0.5
n=2 0.9066 0.9072
n=3 0.9093 0.9096
n=4 0.9200 0.9202
n=5 0.9219 0.9220
n=10 0.9364 0.9364
n=20 0.9409 0.9409

Table 2. Polynomial of degree 2,g2(x) = 2+0.3x+0.01x2

µ = (0;25;50)′ KR1 KR2
σx = 1.25,σy = 0.625

n=2 0.8692 0.8692
n=3 0.9212 0.9212
n=4 0.9340 0.9340
n=5 0.9434 0.9434
n=10 0.9488 0.9488
n=20 0.9516 0.9516

σx = 2.5,σy = 1.25
n=2 0.8865 0.8865
n=3 0.9257 0.9257
n=4 0.9332 0.9332
n=5 0.9361 0.9361
n=10 0.9464 0.9464
n=20 0.9491 0.9491

σx = 5,σy = 2.5
n=2 0.9473 0.9473
n=3 0.9376 0.9376
n=4 0.9345 0.9345
n=5 0.9401 0.9401
n=10 0.9462 0.9462
n=20 0.9505 0.9505

σx = 10,σy = 5
n=2 0.9508 0.9508
n=3 0.9363 0.9363
n=4 0.9381 0.9381
n=5 0.9362 0.9362
n=10 0.9366 0.9366
n=20 0.9466 0.9466

µ = (0;10;. . . ;90)′ KR1 KR2
σx = 1.25,σy = 0.625

n=2 0.9249 0.9250
n=3 0.9364 0.9364
n=4 0.9417 0.9418
n=5 0.9454 0.9455
n=10 0.9482 0.9484
n=20 0.9531 0.9531

σx = 2.5,σy = 1.25
n=2 0.9210 0.9211
n=3 0.9386 0.9388
n=4 0.9445 0.9447
n=5 0.9489 0.9490
n=10 0.9468 0.9469
n=20 0.9476 0.9476

σx = 5,σy = 2.5
n=2 0.9230 0.9236
n=3 0.9349 0.9353
n=4 0.9430 0.9431
n=5 0.9407 0.9411
n=10 0.9466 0.9468
n=20 0.9475 0.9475

σx = 10,σy = 5
n=2 0.9253 0.9260
n=3 0.9302 0.9370
n=4 0.9328 0.9329
n=5 0.9368 0.9368
n=10 0.9437 0.9437
n=20 0.9468 0.9469

Table 3. Polynomial of degree 3,f3(x) =−0.8+2.46x−0.38x2+0.025x3

µ = (1;3.5;6;8.5)′ KR1 KR2
σx = 0.125,σy = 0.0625

n=2 0.8731 0.8731
n=3 0.9153 0.9153
n=4 0.9342 0.9342
n=5 0.9420 0.9420
n=10 0.9431 0.9431
n=20 0.9509 0.9509

σx = 0.25,σy = 0.125
n=2 0.8684 0.8684
n=3 0.9070 0.9070
n=4 0.9321 0.9321
n=5 0.9382 0.9382
n=10 0.9422 0.9422
n=20 0.9463 0.9463

σx = 0.5,σy = 0.25
n=2 0.8583 0.8583
n=3 0.8979 0.8979
n=4 0.9195 0.9195
n=5 0.9231 0.9231
n=10 0.9388 0.9388
n=20 0.9460 0.9460

σx = 1,σy = 0.5
n=2 0.8997 0.8997
n=3 0.8822 0.8822
n=4 0.8717 0.8717
n=5 0.8759 0.8759
n=10 0.9073 0.9073
n=20 0.9322 0.9322

µ = (0;1;. . . ;10)′ KR1 KR2
σx = 0.125,σy = 0.0625

n=2 0.9228 0.9230
n=3 0.9368 0.9370
n=4 0.9429 0.9429
n=5 0.9439 0.9441
n=10 0.9447 0.9447
n=20 0.9475 0.9475

σx = 0.25,σy = 0.125
n=2 0.9145 0.9146
n=3 0.9298 0.9299
n=4 0.9352 0.9353
n=5 0.9418 0.9418
n=10 0.9480 0.9480
n=20 0.9462 0.9462

σx = 0.5,σy = 0.25
n=2 0.9074 0.9075
n=3 0.9203 0.9205
n=4 0.9243 0.9244
n=5 0.9311 0.9311
n=10 0.9441 0.9442
n=20 0.9465 0.9466

σx = 1,σy = 0.5
n=2 0.8610 0.8619
n=3 0.8776 0.8784
n=4 0.8943 0.8948
n=5 0.9032 0.9036
n=10 0.9219 0,9219
n=20 0.9294 0.9295

Table 4. Polynomial of degree 3,

g3(x) = 0.00023x3−0.035x2+2.2x+1

µ = (10;35;60;85)′ KR1 KR2
σx = 1.25,σy = 0.625

n=2 0.8778 0.8778
n=3 0.9219 0.9219
n=4 0.9376 0.9376
n=5 0.9412 0.9412
n=10 0.9433 0.9433
n=20 0.9520 0.9520

σx = 2.5,σy = 1.25
n=2 0.8776 0.8776
n=3 0.9136 0.9136
n=4 0.9310 0.9310
n=5 0.9375 0.9375
n=10 0.9458 0.9458
n=20 0.9479 0.9479

σx = 5,σy = 2.5
n=2 0.8683 0.8683
n=3 0.8973 0.8973
n=4 0.9235 0.9235
n=5 0.9218 0.9218
n=10 0.9382 0.9382
n=20 0.9442 0.9442

σx = 10,σy = 5
n=2 0.9058 0.9058
n=3 0.8856 0.8856
n=4 0.8796 0.8796
n=5 0.8900 0.8900
n=10 0.9098 0.9098
n=20 0.9306 0.9306

µ = (0;10;. . . ;100)′ KR1 KR2
σx = 1.25,σy = 0.625

n=2 0.9242 0.9243
n=3 0.9415 0.9415
n=4 0.9414 0.9414
n=5 0.9461 0.9461
n=10 0.9481 0.9482
n=20 0.9457 0.9457

σx = 2.5,σy = 1.25
n=2 0.9147 0.9150
n=3 0.9354 0.9354
n=4 0.9354 0.9356
n=5 0.9393 0.9359
n=10 0.9452 0.9454
n=20 0.9489 0.9489

σx = 5,σy = 2.5
n=2 0.9010 0.9011
n=3 0.9155 0.9159
n=4 0.9200 0.9204
n=5 0.9297 0.9298
n=10 0.9457 0.9457
n=20 0.9413 0.9414

σx = 10,σy = 5
n=2 0.8633 0.8639
n=3 0.8773 0.8777
n=4 0.8911 0.8915
n=5 0.9045 0.9047
n=10 0.9215 0.9215
n=20 0.9346 0.9347

Table 5. Polynomial of degree 4,

f4(x) =−0.45+0.8x+0.35x2−0.07x3+0.0037x4

µ = (0;2.5;. . . ;10)′ KR1 KR2
σx = 0.125,σy = 0.0625

n=2 0.8658 0.8658
n=3 0.9157 0.9157
n=4 0.9295 0.9295
n=5 0.9345 0.9345
n=10 0.9466 0.9466
n=20 0.9475 0.9475

σx = 0.25,σy = 0.125
n=2 0.8500 0.8500
n=3 0.9108 0.9108
n=4 0.9242 0.9242
n=5 0.9241 0.9241
n=10 0.9333 0.9333
n=20 0.9412 0.9412

σx = 0.5,σy = 0.25
n=2 0.8658 0.8658
n=3 0.9025 0.9025
n=4 0.9134 0.9134
n=5 0.9169 0.9169
n=10 0.9211 0.9211
n=20 0.9296 0.9296

σx = 1,σy = 0.5
n=2 0.9334 0.9334
n=3 0.9121 0.9121
n=4 0.9086 0.9086
n=5 0.9114 0.9114
n=10 0.9172 0.9172
n=20 0.9247 0.9247

µ = (0;1;. . . ;11)′ KR1 KR2
σx = 0.125,σy = 0.0625

n=2 0.9204 0.9206
n=3 0.9342 0.9344
n=4 0.9358 0.9358
n=5 0.9381 0.9384
n=10 0.9445 0.9446
n=20 0.9496 0.9496

σx = 0.25,σy = 0.125
n=2 0.8995 0.8996
n=3 0.9210 0.9211
n=4 0.9253 0.9254
n=5 0.9332 0.9333
n=10 0.9423 0.9423
n=20 0.9457 0.9457

σx = 0.5,σy = 0.25
n=2 0.8859 0.8859
n=3 0.8991 0.8992
n=4 0.9084 0.9086
n=5 0.9176 0.9177
n=10 0.9268 0.9268
n=20 0.9376 0.9376

σx = 1,σy = 0.5
n=2 0.8297 0.8306
n=3 0.8628 0.8634
n=4 0.8782 0.8790
n=5 0.8951 0.8955
n=10 0.9068 0.9068
n=20 0.9146 0.9146

Table 6. Polynomial of degree 4,

g4(x) = 5−2.47x+0.175x2−0.0027x3+0.000013x4

µ = (0;25;. . . ;100)′ KR1 KR2
σx = 1.25,σy = 0.625

n=2 0.8605 0.8605
n=3 0.9157 0.9157
n=4 0.9316 0.9316
n=5 0.9356 0.9356
n=10 0.9482 0.9482
n=20 0.9494 0.9494

σx = 2.5,σy = 1.25
n=2 0.8527 0.8527
n=3 0.9090 0.9090
n=4 0.9254 0.9254
n=5 0.9399 0.9399
n=10 0.9423 0.9423
n=20 0.9482 0.9482

σx = 5,σy = 2.5
n=2 0.8356 0.8356
n=3 0.8823 0.8823
n=4 0.9079 0.9079
n=5 0.9158 0.9158
n=10 0.9372 0.9372
n=20 0.9431 0.9431

σx = 10,σy = 5
n=2 0.8794 0.8794
n=3 0.8529 0.8529
n=4 0.8592 0.8592
n=5 0.8606 0.8606
n=10 0.8962 0.8962
n=20 0.9214 0.9214

µ = (0;10;. . . ;110)′ KR1 KR2
σx = 1.25,σy = 0.625

n=2 0.9193 0.9200
n=3 0.9388 0.9392
n=4 0.9464 0.9469
n=5 0.9443 0.9446
n=10 0.9537 0.9537
n=20 0.9479 0.9479

σx = 2.5,σy = 1.25
n=2 0.9159 0.9162
n=3 0.9341 0.9348
n=4 0.9443 0.9447
n=5 0.9397 0.9403
n=10 0.9501 0.9503
n=20 0.9495 0.9495

σx = 5,σy = 2.5
n=2 0.9092 0.9105
n=3 0.9256 0.9259
n=4 0.9296 0.9303
n=5 0.9392 0.9394
n=10 0.9442 0.9442
n=20 0.9494 0.9494

σx = 10,σy = 5
n=2 0.8549 0.8565
n=3 0.8895 0.8900
n=4 0.8976 0.8978
n=5 0.9105 0.9106
n=10 0.9285 0.9289
n=20 0.9432 0.9433
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[4] Kubáček, L., Kubá̌cková, L. (2000) Statistics and
Metrology. (In Czech). Olomouc, Czech Republic:
Palacký University Olomouc. (in Czech)
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